@ -5,21 +5,23 @@
@File : ANN_test . py
@File : ANN_test . py
@Software : PyCharm
@Software : PyCharm
"""
"""
import json
import os
import os
import time
import time
import json
import request s
import kera s
import numpy as np
import numpy as np
import requests
import tensorflow as tf
import tensorflow as tf
from tensorflow . keras import backend
from keras import backend
import PCA_Test_offline
from keras . models import model_from_json
from sklearn . preprocessing import MinMaxScaler
from sklearn . preprocessing import MinMaxScaler
from tensorflow . keras . models import load_model
from tensorflow . keras . models import model_from_json
import config
import config
os . environ [ " KMP_DUPLICATE_LIB_OK " ] = " TRUE "
os . environ [ " KMP_DUPLICATE_LIB_OK " ] = " TRUE "
def get_history_value ( points , time1 , interval , typedata ) :
def get_history_value ( points , time1 , interval , typedata ) :
url = f " http:// { config . _EXA_IP } :9000/exawebapi/exatime/GetSamplingValueArrayFloat "
url = f " http:// { config . _EXA_IP } :9000/exawebapi/exatime/GetSamplingValueArrayFloat "
headers = { " Content-Type " : " application/json;charset=utf-8 " } # ,"token":get_token()
headers = { " Content-Type " : " application/json;charset=utf-8 " } # ,"token":get_token()
@ -47,7 +49,7 @@ def get_history_value(points,time1,interval,typedata):
def rmse ( y_true , y_pred ) :
def rmse ( y_true , y_pred ) :
return backend . sqrt ( backend . mean ( tf . keras . losses . mean_squared_error ( y_true , y_pred ) , axis = - 1 ) )
return backend . sqrt ( backend . mean ( keras . losses . mean_squared_error ( y_true , y_pred ) , axis = - 1 ) )
def main ( mms1 , mms2 , x_data , origndata , filepath , weight ) :
def main ( mms1 , mms2 , x_data , origndata , filepath , weight ) :
@ -84,7 +86,7 @@ def main(mms1,mms2,x_data,origndata,filepath,weight):
y_normal = mms_y . transform ( origndata )
y_normal = mms_y . transform ( origndata )
with tf . compat . v1 . Session ( ) :
with tf . compat . v1 . Session ( ) :
spe = rmse ( predict_data , y_normal ) . eval ( )
spe = rmse ( predict_data , y_normal ) . eval ( )
mse = tf . sqrt ( tf . keras . losses . mean_squared_error ( predict_data , y_normal ) ) . eval ( )
mse = tf . sqrt ( keras . losses . mean_squared_error ( predict_data , y_normal ) ) . eval ( )
y_data = mms_y . inverse_transform ( predict_data )
y_data = mms_y . inverse_transform ( predict_data )
# return y_data
# return y_data
result = { }
result = { }
@ -142,6 +144,7 @@ def test_offline_main(mms1,mms2,x_data,output_data, filepath,weight):
result [ " FAI " ] = [ spe ]
result [ " FAI " ] = [ spe ]
return result
return result
def isnumber ( limits ) :
def isnumber ( limits ) :
flag = True
flag = True
for item in limits :
for item in limits :
@ -151,6 +154,7 @@ def isnumber(limits):
break
break
return flag
return flag
def clean_main ( info ) :
def clean_main ( info ) :
try :
try :
datatype = info [ ' type ' ]
datatype = info [ ' type ' ]