Browse Source

Add compiled Python bytecode for config and recon modules

- Generated __pycache__ files for config.py and recon.py, containing the compiled bytecode.
- These changes improve the loading time of the modules by utilizing cached bytecode.
pull/6/head
chenjiale 2 weeks ago
parent
commit
2dec3c73fb
  1. 3
      AANN_Fit.py
  2. 20
      ANN_Test_offline.py
  3. 13
      ANN_Train_offline.py
  4. 14
      PCA_Test.py
  5. 10
      PCA_Test_offline.py
  6. BIN
      __pycache__/PCA_Test.cpython-310.pyc
  7. BIN
      __pycache__/PCA_Test.cpython-39.pyc
  8. BIN
      __pycache__/PCA_Test_offline.cpython-310.pyc
  9. BIN
      __pycache__/app.cpython-310.pyc
  10. BIN
      __pycache__/app.cpython-39.pyc
  11. BIN
      __pycache__/config.cpython-310.pyc
  12. BIN
      __pycache__/recon.cpython-310.pyc
  13. 8
      app.py
  14. BIN
      requirements.txt

3
AANN_Fit.py

@ -4,9 +4,6 @@ import config
import json import json
import sys import sys
import requests import requests
import datetime
import jenkspy
import xlrd
import AANN_Fit import AANN_Fit
import traceback import traceback

20
ANN_Test_offline.py

@ -5,21 +5,23 @@
@File : ANN_test.py @File : ANN_test.py
@Software: PyCharm @Software: PyCharm
""" """
import json
import os import os
import time import time
import json
import requests import keras
import numpy as np import numpy as np
import requests
import tensorflow as tf import tensorflow as tf
from tensorflow.keras import backend from keras import backend
import PCA_Test_offline from keras.models import model_from_json
from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import load_model
from tensorflow.keras.models import model_from_json
import config import config
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
def get_history_value(points, time1, interval, typedata): def get_history_value(points, time1, interval, typedata):
url = f"http://{config._EXA_IP}:9000/exawebapi/exatime/GetSamplingValueArrayFloat" url = f"http://{config._EXA_IP}:9000/exawebapi/exatime/GetSamplingValueArrayFloat"
headers = {"Content-Type": "application/json;charset=utf-8"} # ,"token":get_token() headers = {"Content-Type": "application/json;charset=utf-8"} # ,"token":get_token()
@ -47,7 +49,7 @@ def get_history_value(points,time1,interval,typedata):
def rmse(y_true, y_pred): def rmse(y_true, y_pred):
return backend.sqrt(backend.mean(tf.keras.losses.mean_squared_error(y_true, y_pred), axis=-1)) return backend.sqrt(backend.mean(keras.losses.mean_squared_error(y_true, y_pred), axis=-1))
def main(mms1, mms2, x_data, origndata, filepath, weight): def main(mms1, mms2, x_data, origndata, filepath, weight):
@ -84,7 +86,7 @@ def main(mms1,mms2,x_data,origndata,filepath,weight):
y_normal = mms_y.transform(origndata) y_normal = mms_y.transform(origndata)
with tf.compat.v1.Session(): with tf.compat.v1.Session():
spe = rmse(predict_data, y_normal).eval() spe = rmse(predict_data, y_normal).eval()
mse=tf.sqrt(tf.keras.losses.mean_squared_error(predict_data, y_normal)).eval() mse = tf.sqrt(keras.losses.mean_squared_error(predict_data, y_normal)).eval()
y_data = mms_y.inverse_transform(predict_data) y_data = mms_y.inverse_transform(predict_data)
# return y_data # return y_data
result = {} result = {}
@ -142,6 +144,7 @@ def test_offline_main(mms1,mms2,x_data,output_data, filepath,weight):
result["FAI"] = [spe] result["FAI"] = [spe]
return result return result
def isnumber(limits): def isnumber(limits):
flag = True flag = True
for item in limits: for item in limits:
@ -151,6 +154,7 @@ def isnumber(limits):
break break
return flag return flag
def clean_main(info): def clean_main(info):
try: try:
datatype = info['type'] datatype = info['type']

13
ANN_Train_offline.py

@ -17,10 +17,9 @@ import pandas as pd
import requests import requests
import tensorflow as tf import tensorflow as tf
from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras import backend import keras
from tensorflow.keras import layers from keras import backend
from tensorflow.keras.models import load_model from keras import layers
from tensorflow.keras.models import model_from_json
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
@ -53,7 +52,7 @@ def get_history_value(points, time, interval, typedata):
def rmse(y_true, y_pred): def rmse(y_true, y_pred):
return backend.sqrt(backend.mean(tf.keras.losses.mean_squared_error(y_true, y_pred), axis=-1)) return backend.sqrt(backend.mean(keras.losses.mean_squared_error(y_true, y_pred), axis=-1))
def TrainOffline(x_data, y_data, hidden_layers, epochsdata): def TrainOffline(x_data, y_data, hidden_layers, epochsdata):
@ -73,7 +72,7 @@ def TrainOffline(x_data, y_data, hidden_layers, epochsdata):
x_train = x_normal x_train = x_normal
y_train = y_normal y_train = y_normal
# 构建网络结构 # 构建网络结构
model = tf.keras.Sequential() model = keras.Sequential()
model.add(layers.Dense(units=hidden_layers[0], input_dim=x_data.shape[1], activation="sigmoid")) model.add(layers.Dense(units=hidden_layers[0], input_dim=x_data.shape[1], activation="sigmoid"))
for i in range(len(hidden_layers) - 1): for i in range(len(hidden_layers) - 1):
model.add(layers.Dense(units=hidden_layers[i + 1], activation="sigmoid")) model.add(layers.Dense(units=hidden_layers[i + 1], activation="sigmoid"))
@ -150,7 +149,7 @@ def Train(x_data, y_data, hidden_layers, valuetrs, epochsdata):
x_train = x_normal x_train = x_normal
y_train = y_normal y_train = y_normal
# 构建网络结构 # 构建网络结构
model = tf.keras.Sequential() model = keras.Sequential()
model.add(layers.Dense(units=hidden_layers[0], input_dim=x_data.shape[1], activation="sigmoid")) model.add(layers.Dense(units=hidden_layers[0], input_dim=x_data.shape[1], activation="sigmoid"))
for i in range(len(hidden_layers) - 1): for i in range(len(hidden_layers) - 1):
model.add(layers.Dense(units=hidden_layers[i + 1], activation="sigmoid")) model.add(layers.Dense(units=hidden_layers[i + 1], activation="sigmoid"))

14
PCA_Test.py

@ -5,24 +5,10 @@ PCA source code
@author: liudiwei @author: liudiwei
""" """
import xlsxwriter as xw
import numpy as np import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import norm
from scipy.stats.distributions import chi2
import json import json
import sys
import pymssql import pymssql
import requests import requests
import datetime
from scipy.stats import norm
from scipy.stats import f
from scipy.stats import chi2
import jenkspy
import xlrd
import time
# import PCA_Test_offline
import config import config

10
PCA_Test_offline.py

@ -7,21 +7,11 @@ PCA source code————最新更新—————————————
import numpy as np import numpy as np
import pandas as pd
from scipy.stats import norm
from scipy.stats.distributions import chi2
import json import json
import sys
import pymssql import pymssql
import requests import requests
import datetime
from scipy.stats import norm
from scipy.stats import f
from scipy.stats import chi2
import jenkspy import jenkspy
import xlrd
import gc import gc
import time
import pyodbc import pyodbc
from recon import Lars, recon_fault_diagnosis_r, recon_fault_diagnosis_r_l, recon_fault_diagnosis_r_c from recon import Lars, recon_fault_diagnosis_r, recon_fault_diagnosis_r_l, recon_fault_diagnosis_r_c
import config import config

BIN
__pycache__/PCA_Test.cpython-310.pyc

Binary file not shown.

BIN
__pycache__/PCA_Test.cpython-39.pyc

Binary file not shown.

BIN
__pycache__/PCA_Test_offline.cpython-310.pyc

Binary file not shown.

BIN
__pycache__/app.cpython-310.pyc

Binary file not shown.

BIN
__pycache__/app.cpython-39.pyc

Binary file not shown.

BIN
__pycache__/config.cpython-310.pyc

Binary file not shown.

BIN
__pycache__/recon.cpython-310.pyc

Binary file not shown.

8
app.py

@ -1,20 +1,12 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import datetime
import json import json
import json
import sys
import traceback import traceback
import PCA_Test import PCA_Test
import PCA_Test_offline import PCA_Test_offline
import config
import jenkspy
import numpy as np import numpy as np
import requests
import xlrd
from flask import Flask from flask import Flask
from flask import request from flask import request
from numba import jit
app = Flask(__name__) app = Flask(__name__)

BIN
requirements.txt

Binary file not shown.
Loading…
Cancel
Save