Compare commits
3 Commits
bb49dfc100
...
51727fd4f4
| Author | SHA1 | Date |
|---|---|---|
|
|
51727fd4f4 | 2 months ago |
|
|
fb5aa9f763 | 2 months ago |
|
|
3769ff14c8 | 2 months ago |
276 changed files with 534 additions and 476478 deletions
@ -0,0 +1,39 @@ |
|||
kind: pipeline |
|||
type: docker |
|||
name: build-and-run-python |
|||
|
|||
trigger: |
|||
branch: |
|||
include: |
|||
- master |
|||
event: |
|||
include: |
|||
- push |
|||
- custom |
|||
- merge_request |
|||
|
|||
steps: |
|||
- name: build python image |
|||
image: docker |
|||
volumes: |
|||
- name: dockersock |
|||
path: /var/run/docker.sock |
|||
commands: |
|||
# 构建镜像(你需要在项目中准备 scripts/Dockerfile.python) |
|||
- docker build -t alert-python:latest -f Dockerfile.python . |
|||
|
|||
- name: run python container |
|||
image: docker |
|||
volumes: |
|||
- name: dockersock |
|||
path: /var/run/docker.sock |
|||
commands: |
|||
- docker stop alert-python || true |
|||
- docker rm alert-python || true |
|||
# 启动 Python 服务容器,假设服务监听 8082 端口 |
|||
- docker run -d --restart always --name alert-python --network alert-net -p 8082:8082 alert-python:latest |
|||
|
|||
volumes: |
|||
- name: dockersock |
|||
host: |
|||
path: /var/run/docker.sock |
|||
@ -0,0 +1,11 @@ |
|||
FROM docker.io/python:3.9.20-slim |
|||
|
|||
WORKDIR /app |
|||
|
|||
COPY requirements.txt . |
|||
|
|||
RUN pip install --no-cache-dir -r requirements.txt |
|||
|
|||
COPY . . |
|||
|
|||
CMD ["python", "app.py"] |
|||
@ -0,0 +1,44 @@ |
|||
# -*- mode: python ; coding: utf-8 -*- |
|||
|
|||
|
|||
block_cipher = None |
|||
|
|||
|
|||
a = Analysis(['app.py'], |
|||
pathex=[], |
|||
binaries=[], |
|||
datas=[], |
|||
hiddenimports=[], |
|||
hookspath=[], |
|||
hooksconfig={}, |
|||
runtime_hooks=[], |
|||
excludes=[], |
|||
win_no_prefer_redirects=False, |
|||
win_private_assemblies=False, |
|||
cipher=block_cipher, |
|||
noarchive=False) |
|||
pyz = PYZ(a.pure, a.zipped_data, |
|||
cipher=block_cipher) |
|||
|
|||
exe = EXE(pyz, |
|||
a.scripts, |
|||
[], |
|||
exclude_binaries=True, |
|||
name='app', |
|||
debug=False, |
|||
bootloader_ignore_signals=False, |
|||
strip=False, |
|||
upx=True, |
|||
console=True, |
|||
disable_windowed_traceback=False, |
|||
target_arch=None, |
|||
codesign_identity=None, |
|||
entitlements_file=None ) |
|||
coll = COLLECT(exe, |
|||
a.binaries, |
|||
a.zipfiles, |
|||
a.datas, |
|||
strip=False, |
|||
upx=True, |
|||
upx_exclude=[], |
|||
name='app') |
|||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1 +0,0 @@ |
|||
{"FDR": 0.0020000000000000018, "FAR": 0.0018076923076923077} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.09199999999999997, "FAR": 0.0028461538461538463} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0016153846153846153} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0013846153846153845} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0015769230769230769} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.7130000000000001, "FAR": 0.003269230769230769} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.994, "FAR": 0.0016538461538461537} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0015769230769230769} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0016153846153846153} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0015769230769230769} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0015384615384615385} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0016153846153846153} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0016153846153846153} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.46699999999999997, "FAR": 0.13777777777777778} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.868, "FAR": 0.15344444444444444} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.007845188284518856, "FAR": 0.001953125} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.1931106471816284, "FAR": 0.004943390208898103} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0016729735112527384} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0015537229592446516} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.770440251572327, "FAR": 0.001912960306073649} |
|||
@ -1,28 +0,0 @@ |
|||
try: |
|||
for i in range(1, 3): |
|||
k = i |
|||
model = pca_train_k.pca(train_data, k) |
|||
if al_type == "SPE": |
|||
limit = model["QCUL_95"] |
|||
elif al_type == "FAI": |
|||
limit = model["Kesi_95"] |
|||
else: |
|||
limit = model["T2CUL_95"] |
|||
_, test_data, f_m = get_test_data_1(train_data, samples, amplitudes, fault_index, 1) |
|||
data = (test_data - model["Train_X_mean"]) / model["Train_X_std"] |
|||
t_r = get_rb_pca(data, model, limit, al_type, f_m) |
|||
result.append(t_r) |
|||
except Exception as e: |
|||
with open('log.log', "a") as f: |
|||
f.write(f"{str(datetime.datetime.now())}{traceback.format_exc()}") |
|||
|
|||
|
|||
|
|||
# for index in range(data.shape[0]): |
|||
# line = data[index] @ m @ data[index].T |
|||
# lines.append(line) |
|||
# x = list(range(data.shape[0])) |
|||
# limits_line = list(repeat(limit, data.shape[0])) |
|||
# plt.plot(x, lines) |
|||
# plt.plot(x, limits_line) |
|||
# plt.title(f'k={k},limit={limit}') |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0015949599266318435} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0017141034840149885} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0016721076518831117} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0013954786491766676} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.0015545280612244898} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.001634117178158629} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.926, "FAR": 0.0006666666666666666} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.984, "FAR": 0.0071111111111111115} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.17000000000000004, "FAR": 0.025444444444444443} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.821, "FAR": 0.018} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.5720000000000001, "FAR": 0.008} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.921, "FAR": 0.008222222222222223} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.783, "FAR": 0.0035555555555555557} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.958, "FAR": 0.0012222222222222222} |
|||
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,95 +0,0 @@ |
|||
# -*- coding: utf-8 -*- |
|||
""" |
|||
@Time : 2020/5/29 13:52 |
|||
@Author : 杰森·家乐森 |
|||
@File : ae_train.py |
|||
@Software: PyCharm |
|||
""" |
|||
|
|||
import time |
|||
import json |
|||
import numpy as np |
|||
import pandas as pd |
|||
import tensorflow as tf |
|||
from sklearn.metrics import r2_score |
|||
from tensorflow.keras import backend |
|||
from tensorflow.keras.models import Model |
|||
from sklearn.preprocessing import MinMaxScaler |
|||
from tensorflow.keras.layers import Dense, Input |
|||
|
|||
|
|||
def rmse(y_true, y_pred): |
|||
return backend.sqrt(backend.mean(tf.keras.losses.mean_squared_error(y_true, y_pred), axis=-1)) |
|||
|
|||
|
|||
def train(layers, data, test, epoch): |
|||
""" |
|||
自编码训练函数 |
|||
:param data: 归一化数据 |
|||
:param layers: 网络结构,int类型数组 |
|||
:param epoch: 训练次数 |
|||
:return: |
|||
""" |
|||
mms = MinMaxScaler() |
|||
data = mms.fit_transform(data) |
|||
test = mms.transform(test) |
|||
mid = len(layers) // 2 - 1 |
|||
layer = [Input(shape=(layers[0],))] |
|||
for i in range(len(layers) - 1): |
|||
if i == mid: |
|||
layer.append(Dense(layers[i + 1])(layer[i])) |
|||
else: |
|||
layer.append(Dense(layers[i + 1], activation="sigmoid")(layer[i])) |
|||
autoencoder = Model(layer[0], layer[-1]) |
|||
autoencoder.compile(optimizer="adam", loss="mse", |
|||
metrics=['accuracy']) |
|||
autoencoder.fit(data, data, epochs=epoch, batch_size=32, shuffle=True) |
|||
test_data = autoencoder.predict(data, batch_size=400) |
|||
test_out = autoencoder.predict(test, batch_size=400) |
|||
with tf.Session(): |
|||
spe = rmse(data, test_data).eval() |
|||
limit = 3 * spe |
|||
mse = rmse(test, test_out).eval() |
|||
# r2 = r2_score(data, test_data) |
|||
r2 = r2_score(test, test_out) |
|||
weight = autoencoder.get_weights() |
|||
weights = [] |
|||
bias = [] |
|||
is_weight = True |
|||
model = { |
|||
"weights": weights, |
|||
"bias": bias |
|||
} |
|||
for i in range(len(weight)): |
|||
if is_weight: |
|||
weights.append(weight[i].tolist()) |
|||
is_weight = False |
|||
else: |
|||
bias.append(weight[i].tolist()) |
|||
is_weight = True |
|||
return model, float(limit), r2, float(mse) |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
with open('data.json', 'r') as f: |
|||
data = np.array(json.load(f)['data']) |
|||
layer_arr = [ |
|||
[10, 1, 10], |
|||
[10, 8, 1, 8, 10], |
|||
[10, 8, 6, 1, 6, 8, 10] |
|||
] |
|||
for i in range(len(layer_arr)): |
|||
k = len(layer_arr[i]) // 2 |
|||
for j in range(5): |
|||
layer_arr[i][k] = j + 1 |
|||
model, limit, r2, mse = train(layer_arr[i], data[:3000, :], data, 5000) |
|||
model_config = { |
|||
"layer": layer_arr[i], |
|||
"r2": r2, |
|||
"mse": mse, |
|||
"model": model, |
|||
"spe": limit |
|||
} |
|||
with open('model%d_%d.json' % (len(layer_arr[i]), j + 1), 'w') as f: |
|||
f.write(json.dumps(model_config)) |
|||
print('OK') |
|||
@ -1,109 +0,0 @@ |
|||
{ |
|||
"model": { |
|||
"weights": [ |
|||
[ |
|||
[ |
|||
0.013267557136714458, |
|||
1.161040186882019 |
|||
], |
|||
[ |
|||
0.053286824375391006, |
|||
-1.0407843589782715 |
|||
], |
|||
[ |
|||
-0.7668898105621338, |
|||
1.2049490213394165 |
|||
], |
|||
[ |
|||
0.13135650753974915, |
|||
-1.8514107465744019 |
|||
], |
|||
[ |
|||
-0.05695141851902008, |
|||
0.8509989380836487 |
|||
], |
|||
[ |
|||
1.7956933975219727, |
|||
0.868218183517456 |
|||
], |
|||
[ |
|||
-0.6104443669319153, |
|||
-0.19653184711933136 |
|||
], |
|||
[ |
|||
1.109096884727478, |
|||
-0.017840193584561348 |
|||
], |
|||
[ |
|||
-2.00811767578125, |
|||
-0.4331284761428833 |
|||
], |
|||
[ |
|||
0.8440019488334656, |
|||
0.004479509778320789 |
|||
] |
|||
], |
|||
[ |
|||
[ |
|||
-2.9800901412963867, |
|||
2.9839468002319336, |
|||
-1.9138803482055664, |
|||
0.763970136642456, |
|||
3.1833763122558594, |
|||
7.314971923828125, |
|||
-7.338461875915527, |
|||
5.048229217529297, |
|||
-2.2446556091308594, |
|||
-11.515352249145508 |
|||
], |
|||
[ |
|||
7.767373561859131, |
|||
-7.772740840911865, |
|||
5.254458904266357, |
|||
-2.1539909839630127, |
|||
-12.252762794494629, |
|||
1.64174222946167, |
|||
-1.6902512311935425, |
|||
1.0922235250473022, |
|||
-0.36473581194877625, |
|||
-1.7786568403244019 |
|||
] |
|||
] |
|||
], |
|||
"bias": [ |
|||
[ |
|||
-0.12595483660697937, |
|||
-0.46088284254074097 |
|||
], |
|||
[ |
|||
-2.623779535293579, |
|||
1.970546007156372, |
|||
-1.4591680765151978, |
|||
-0.1846103072166443, |
|||
0.5310178995132446, |
|||
-5.116513729095459, |
|||
4.508279800415039, |
|||
-3.150614023208618, |
|||
0.5747373700141907, |
|||
3.220733165740967 |
|||
] |
|||
] |
|||
}, |
|||
"spe": 0.17004422843456268, |
|||
"cov": [ |
|||
[ |
|||
22.631289381543212, |
|||
-3.8047325457751078 |
|||
], |
|||
[ |
|||
-3.8047325457751078, |
|||
23.33727614059547 |
|||
] |
|||
], |
|||
"h_mean": [ |
|||
0.5599127411842346, |
|||
0.538157045841217 |
|||
], |
|||
"limit_95": 6.011475027591657, |
|||
"limit_99": 9.251043652650376 |
|||
} |
|||
@ -1 +0,0 @@ |
|||
{"model": {"weights": [[[-0.8356160521507263, 0.3092801868915558, -1.2909915447235107, 1.6997143030166626, -0.027433719485998154], [1.1384114027023315, 0.9021164774894714, 0.39725518226623535, -1.7175440788269043, -1.1450926065444946], [-0.5036107897758484, 0.9385666251182556, -1.476340651512146, 0.5507526993751526, -0.1961209625005722], [0.6321204304695129, -0.1261664777994156, 0.3924834430217743, -1.504025936126709, -1.271727204322815], [-1.4868829250335693, -2.190732479095459, 2.3284878730773926, -0.6612717509269714, 1.4683117866516113], [0.3885435163974762, 1.6360031366348267, -0.27096644043922424, -0.6505817770957947, 0.9483583569526672], [0.6231023669242859, 0.44627267122268677, -1.5316928625106812, -1.2492015361785889, -3.0080792903900146], [0.2088644951581955, 2.1375482082366943, -0.5260413289070129, -1.106449842453003, 1.1216826438903809], [1.161962628364563, -1.5129520893096924, -0.9803615212440491, 0.8483885526657104, -1.1303361654281616], [-0.3191094696521759, -1.0919346809387207, 0.6873847842216492, 1.3502848148345947, 1.280632734298706]], [[2.3238298892974854, -0.4271831512451172], [-3.0681726932525635, 1.4455369710922241], [3.102893114089966, 2.151425361633301], [-1.994104266166687, -2.915308952331543], [-0.658724844455719, 3.064145565032959]], [[4.225986480712891, -3.9873640537261963, -3.688408136367798, -10.041897773742676, -4.217791557312012], [-3.526071310043335, 9.990665435791016, -3.4148740768432617, -1.254059076309204, 4.050563335418701]], [[-2.1572444438934326, 1.85689115524292, -1.498786449432373, 1.785080075263977, 1.9605295658111572, -3.683119535446167, 3.6307613849639893, -1.7958505153656006, 0.5846244692802429, 1.6343960762023926], [-2.4148974418640137, 2.371803045272827, -1.5240622758865356, 0.8642465472221375, 1.2768983840942383, 2.6133084297180176, -3.3966615200042725, 1.2262998819351196, -2.612510919570923, -4.64479923248291], [3.0364913940429688, -3.201200008392334, 2.247159719467163, -3.5875837802886963, -5.923583030700684, -3.643436908721924, 3.541846990585327, -2.394259452819824, 0.3634031414985657, 1.1130130290985107], [5.331246376037598, -5.80121374130249, 3.4133965969085693, 1.897201418876648, 1.3766930103302002, -0.1153433546423912, 0.14817313849925995, -0.06482663750648499, -0.26036545634269714, -0.28526535630226135], [0.09504624456167221, -0.30022457242012024, 0.09537942707538605, -0.5121979117393494, -1.3358240127563477, 4.144266605377197, -4.262178421020508, 3.3335225582122803, 0.04168545454740524, -1.972151756286621]]], "bias": [[0.506768524646759, 1.2093656063079834, -0.8774029612541199, -0.9476589560508728, -0.5230045318603516], [0.29825013875961304, -1.4348657131195068], [0.0223399605602026, -0.46129781007766724, 4.27229642868042, 1.873478889465332, -0.6493011713027954], [-1.0499862432479858, 0.8853863477706909, -0.5634945034980774, 0.2314375638961792, 0.9517301917076111, -0.668080747127533, 0.9133151769638062, -0.1797475665807724, 1.027596116065979, 1.3987751007080078]]}, "spe": 0.10670268908143044, "cov": [[31.721639732741355, -6.242508859273951], [-6.2425088592739515, 26.28154801896884]], "h_mean": [0.2731820046901703, 0.5072057843208313], "limit_95": 6.011475027591657, "limit_99": 9.251043652650376} |
|||
@ -1,387 +0,0 @@ |
|||
{ |
|||
"model": { |
|||
"weights": [ |
|||
[ |
|||
[ |
|||
-1.2245333194732666, |
|||
0.9217612743377686, |
|||
0.872409462928772, |
|||
1.0764983892440796, |
|||
0.2999080717563629, |
|||
5.244951248168945, |
|||
-0.9299842119216919 |
|||
], |
|||
[ |
|||
-0.8295643329620361, |
|||
-1.1188461780548096, |
|||
-1.5337766408920288, |
|||
0.2272522896528244, |
|||
-0.09671537578105927, |
|||
-0.2725476622581482, |
|||
3.725551128387451 |
|||
], |
|||
[ |
|||
-1.4028007984161377, |
|||
0.49336981773376465, |
|||
-0.058944400399923325, |
|||
0.9814965724945068, |
|||
1.141343355178833, |
|||
5.971405982971191, |
|||
-0.7457082867622375 |
|||
], |
|||
[ |
|||
-0.8749677538871765, |
|||
-0.8031793236732483, |
|||
-0.27733367681503296, |
|||
0.28917160630226135, |
|||
1.0782771110534668, |
|||
0.14209581911563873, |
|||
3.119966745376587 |
|||
], |
|||
[ |
|||
1.004982829093933, |
|||
0.9370648264884949, |
|||
-0.6308929324150085, |
|||
-0.8727185726165771, |
|||
-1.6758214235305786, |
|||
-2.8413281440734863, |
|||
-4.569004535675049 |
|||
], |
|||
[ |
|||
0.3696422278881073, |
|||
-2.4712371826171875, |
|||
0.9488536715507507, |
|||
2.1806108951568604, |
|||
-1.2012957334518433, |
|||
0.36072051525115967, |
|||
0.23620405793190002 |
|||
], |
|||
[ |
|||
-3.7826366424560547, |
|||
0.9237260818481445, |
|||
-0.8343602418899536, |
|||
-0.6885524392127991, |
|||
1.7286131381988525, |
|||
1.9389992952346802, |
|||
1.3162440061569214 |
|||
], |
|||
[ |
|||
0.36113783717155457, |
|||
-1.4914426803588867, |
|||
0.37810999155044556, |
|||
1.2679622173309326, |
|||
-0.732909083366394, |
|||
1.933423399925232, |
|||
0.9037644267082214 |
|||
], |
|||
[ |
|||
-1.5808677673339844, |
|||
-0.031187832355499268, |
|||
-0.38661620020866394, |
|||
0.4751318693161011, |
|||
1.1403697729110718, |
|||
0.958604097366333, |
|||
1.1177728176116943 |
|||
], |
|||
[ |
|||
0.7001248002052307, |
|||
0.7343422770500183, |
|||
-0.5925262570381165, |
|||
-1.9185808897018433, |
|||
1.1383529901504517, |
|||
-2.0614662170410156, |
|||
-2.6704373359680176 |
|||
] |
|||
], |
|||
[ |
|||
[ |
|||
-1.7921253442764282, |
|||
-1.7791352272033691, |
|||
1.9362361431121826, |
|||
-4.38215446472168, |
|||
-1.696469783782959 |
|||
], |
|||
[ |
|||
1.1622157096862793, |
|||
-1.5756466388702393, |
|||
-0.5181728005409241, |
|||
5.293956756591797, |
|||
3.5066170692443848 |
|||
], |
|||
[ |
|||
0.4845467507839203, |
|||
2.4686086177825928, |
|||
-1.7550359964370728, |
|||
-0.8793517351150513, |
|||
-1.783814787864685 |
|||
], |
|||
[ |
|||
1.4014157056808472, |
|||
1.2228449583053589, |
|||
0.32988429069519043, |
|||
-0.7148339152336121, |
|||
-5.3566131591796875 |
|||
], |
|||
[ |
|||
0.17789016664028168, |
|||
-1.710491418838501, |
|||
-0.4293838143348694, |
|||
2.0826103687286377, |
|||
0.926232099533081 |
|||
], |
|||
[ |
|||
2.32541823387146, |
|||
1.312388300895691, |
|||
-1.2358834743499756, |
|||
0.4478369951248169, |
|||
-2.3990867137908936 |
|||
], |
|||
[ |
|||
-2.395493507385254, |
|||
-0.7135123610496521, |
|||
2.6433749198913574, |
|||
1.1071109771728516, |
|||
-1.9118226766586304 |
|||
] |
|||
], |
|||
[ |
|||
[ |
|||
2.059842109680176, |
|||
2.5099709033966064 |
|||
], |
|||
[ |
|||
-0.26115500926971436, |
|||
1.5193843841552734 |
|||
], |
|||
[ |
|||
-3.904820442199707, |
|||
-1.3211722373962402 |
|||
], |
|||
[ |
|||
2.479161024093628, |
|||
-2.436509847640991 |
|||
], |
|||
[ |
|||
1.2092896699905396, |
|||
-4.882288455963135 |
|||
] |
|||
], |
|||
[ |
|||
[ |
|||
-4.140275955200195, |
|||
4.376102447509766, |
|||
5.007478713989258, |
|||
-5.753604412078857, |
|||
2.551893711090088 |
|||
], |
|||
[ |
|||
5.109598636627197, |
|||
4.395392417907715, |
|||
3.7867867946624756, |
|||
3.2506680488586426, |
|||
-5.936469078063965 |
|||
] |
|||
], |
|||
[ |
|||
[ |
|||
6.964428424835205, |
|||
-1.9023141860961914, |
|||
1.2294992208480835, |
|||
-2.494931697845459, |
|||
5.139438629150391, |
|||
-1.2469078302383423, |
|||
3.8611180782318115 |
|||
], |
|||
[ |
|||
1.4523006677627563, |
|||
9.954370498657227, |
|||
-2.139326810836792, |
|||
-0.9459704160690308, |
|||
2.0168163776397705, |
|||
11.196776390075684, |
|||
2.2062644958496094 |
|||
], |
|||
[ |
|||
0.7467207908630371, |
|||
8.28785514831543, |
|||
-1.298266053199768, |
|||
0.07817942649126053, |
|||
1.3462064266204834, |
|||
11.280993461608887, |
|||
0.24093034863471985 |
|||
], |
|||
[ |
|||
5.210637092590332, |
|||
-4.294027328491211, |
|||
2.1438729763031006, |
|||
-3.282440185546875, |
|||
3.713907480239868, |
|||
-3.499796152114868, |
|||
5.917919635772705 |
|||
], |
|||
[ |
|||
-5.016149044036865, |
|||
-2.7130753993988037, |
|||
-0.2851487696170807, |
|||
8.532496452331543, |
|||
-3.5970492362976074, |
|||
-1.5019468069076538, |
|||
-7.698583126068115 |
|||
] |
|||
], |
|||
[ |
|||
[ |
|||
-0.6968080997467041, |
|||
0.7484884262084961, |
|||
-0.4230259656906128, |
|||
0.46702805161476135, |
|||
0.9606726765632629, |
|||
2.2319283485412598, |
|||
-2.3976309299468994, |
|||
2.276494026184082, |
|||
-4.385148048400879, |
|||
-6.036461353302002 |
|||
], |
|||
[ |
|||
0.7987446188926697, |
|||
-1.1139551401138306, |
|||
-0.22006738185882568, |
|||
4.318490505218506, |
|||
0.9564504027366638, |
|||
0.015492977574467659, |
|||
-0.021582378074526787, |
|||
0.019811546429991722, |
|||
-0.036860693246126175, |
|||
0.6295841932296753 |
|||
], |
|||
[ |
|||
-5.090571403503418, |
|||
4.759396553039551, |
|||
-4.77251672744751, |
|||
4.969375133514404, |
|||
-2.5499253273010254, |
|||
0.08981809765100479, |
|||
-0.08619396388530731, |
|||
0.0694398358464241, |
|||
-0.1133684366941452, |
|||
1.5965533256530762 |
|||
], |
|||
[ |
|||
-0.662455677986145, |
|||
0.6227018237113953, |
|||
-0.6145215630531311, |
|||
0.7977278232574463, |
|||
1.030511736869812, |
|||
-3.6479456424713135, |
|||
4.154869556427002, |
|||
-3.5671372413635254, |
|||
4.193316459655762, |
|||
-1.9646614789962769 |
|||
], |
|||
[ |
|||
2.118936777114868, |
|||
-2.122020959854126, |
|||
1.6456965208053589, |
|||
-1.680084228515625, |
|||
-0.7294877171516418, |
|||
1.198642611503601, |
|||
-1.2397879362106323, |
|||
1.2121137380599976, |
|||
-2.562821388244629, |
|||
-2.1334125995635986 |
|||
], |
|||
[ |
|||
2.219999313354492, |
|||
-2.3641719818115234, |
|||
2.326659679412842, |
|||
-5.463375568389893, |
|||
-7.3427534103393555, |
|||
-0.009894054383039474, |
|||
0.01199839636683464, |
|||
-0.023310601711273193, |
|||
0.0612969771027565, |
|||
-0.013971450738608837 |
|||
], |
|||
[ |
|||
0.5158653259277344, |
|||
-0.4588440954685211, |
|||
0.5030941963195801, |
|||
-0.557999312877655, |
|||
0.5210561752319336, |
|||
1.4156707525253296, |
|||
-1.5811996459960938, |
|||
0.28104645013809204, |
|||
3.994385004043579, |
|||
0.8332198858261108 |
|||
] |
|||
] |
|||
], |
|||
"bias": [ |
|||
[ |
|||
-1.069589376449585, |
|||
0.0032550811301916838, |
|||
-0.6666462421417236, |
|||
0.35170167684555054, |
|||
0.6081191301345825, |
|||
2.1643481254577637, |
|||
1.325771689414978 |
|||
], |
|||
[ |
|||
-0.6558616757392883, |
|||
-0.682751476764679, |
|||
1.1333270072937012, |
|||
0.24874892830848694, |
|||
-0.09851467609405518 |
|||
], |
|||
[ |
|||
-1.0663052797317505, |
|||
0.11489524692296982 |
|||
], |
|||
[ |
|||
0.264947772026062, |
|||
-3.955415964126587, |
|||
-3.465902328491211, |
|||
0.6347262263298035, |
|||
1.6293431520462036 |
|||
], |
|||
[ |
|||
-0.783745288848877, |
|||
-1.700945496559143, |
|||
0.30000773072242737, |
|||
1.5292822122573853, |
|||
-0.9142544269561768, |
|||
-1.20986008644104, |
|||
-1.3012850284576416 |
|||
], |
|||
[ |
|||
-0.2500978410243988, |
|||
0.04470078647136688, |
|||
0.5079190135002136, |
|||
-0.9122554063796997, |
|||
3.7497880458831787, |
|||
-0.6030765175819397, |
|||
-0.29624900221824646, |
|||
0.2175414264202118, |
|||
-0.4752647280693054, |
|||
4.907028675079346 |
|||
] |
|||
] |
|||
}, |
|||
"spe": 0.046509415842592716, |
|||
"cov": [ |
|||
[ |
|||
59.319103246994395, |
|||
-14.53475875845949 |
|||
], |
|||
[ |
|||
-14.53475875845949, |
|||
71.20353814746151 |
|||
] |
|||
], |
|||
"h_mean": [ |
|||
0.3830653131008148, |
|||
0.3723643720149994 |
|||
], |
|||
"limit_95": 6.011475027591657, |
|||
"limit_99": 9.251043652650376 |
|||
} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.0, "FAR": 0.00034615384615384613} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.0, "FAR": 0.0003846153846153846} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.0020000000000000018, "FAR": 0.0004230769230769231} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.00034615384615384613} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.00034615384615384613} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.013000000000000012, "FAR": 0.00046153846153846153} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.14700000000000002, "FAR": 0.0017307692307692308} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.862, "FAR": 0.001346153846153846} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 0.998, "FAR": 0.0003846153846153846} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.00034615384615384613} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.00034615384615384613} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.00034615384615384613} |
|||
@ -1 +0,0 @@ |
|||
{"FDR": 1.0, "FAR": 0.00034615384615384613} |
|||
Some files were not shown because too many files changed in this diff
Loading…
Reference in new issue