try: for i in range(1, 3): k = i model = pca_train_k.pca(train_data, k) if al_type == "SPE": limit = model["QCUL_95"] elif al_type == "FAI": limit = model["Kesi_95"] else: limit = model["T2CUL_95"] _, test_data, f_m = get_test_data_1(train_data, samples, amplitudes, fault_index, 1) data = (test_data - model["Train_X_mean"]) / model["Train_X_std"] t_r = get_rb_pca(data, model, limit, al_type, f_m) result.append(t_r) except Exception as e: with open('log.log', "a") as f: f.write(f"{str(datetime.datetime.now())}{traceback.format_exc()}") # for index in range(data.shape[0]): # line = data[index] @ m @ data[index].T # lines.append(line) # x = list(range(data.shape[0])) # limits_line = list(repeat(limit, data.shape[0])) # plt.plot(x, lines) # plt.plot(x, limits_line) # plt.title(f'k={k},limit={limit}')