You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

280 lines
10 KiB

# -*- coding: utf-8 -*-
"""
Created on Sun Feb 28 10:04:26 2016
PCA source code
@author: liudiwei
"""
import numpy as np
import json
import pymssql
import requests
import config
"""
参数:
- XMat:传入的是一个numpy的矩阵格式,行表示样本数,列表示特征
- k:表示取前k个特征值对应的特征向量
返回值:
- finalData:参数一指的是返回的低维矩阵,对应于输入参数二
- reconData:参数二对应的是移动坐标轴后的矩阵
"""
def min_pos(X):
X[X <= 0] = np.max(X)
m = np.min(X)
re = np.where(X == m)
min_i = re[0]
min_j = re[1]
if m < 0:
m = 0
return m, min_i, min_j
def Lars(X, Y, D, DIAG, t, limit_line, lamuta):
n, m = X.shape
beta = np.zeros((1, m))
A = []
N_Co_added = 0
i = 0
mse = []
for k in range(m):
i += 1
ero = np.array(Y - beta[-1, :].T)
# c=np.dot(P,DIAG,P.T,ero)
c = np.dot(D, DIAG).dot(D.T).dot(ero) # 计算相关性
C = np.max(np.abs(c))
mse.append(np.dot(ero.T, D).dot(DIAG).dot(D.T).dot(ero))
if mse[k] < limit_line:
break
elif k == 0:
addTndex = np.where(abs(c) == C)[-1][0]
A.append(addTndex) # 活动集
# 更新正在添加的相应协方差索引的数量
N_Co_added = N_Co_added + 1
A_c = list(set(range(0, m)).difference(set(A))) # 非活动集
s_A = np.diag(np.sign(c[A]))
num_Zero_Coeff = len(A_c)
## 计算 X_A, A_A , u_A ,the inner product vecto
X_A = np.dot(X[:, A], s_A).reshape(n, -1)
G_A = np.dot(X_A.T, X_A)
One_A = np.ones((len(A), 1))
s = One_A.copy()
if G_A.shape == ():
inv_GA = 1 / G_A
else:
inv_GA = np.linalg.pinv(G_A)
# G_a_inv_red_cols = np.sum(inv_GA, 1)
A_A = 1 / np.sqrt(np.dot(s.T, inv_GA).dot(s))
w_A = (A_A * inv_GA).dot(s) # w_A: (less then 90%)构成等角的单位向量
u_A = np.dot(X_A, w_A) # .reshape(n)
a = X.T.dot(u_A) # inner product vector
gamma_Test = np.zeros((num_Zero_Coeff, 2))
# gamma=[]
if N_Co_added == m - 1:
gamma = C / A_A
else:
for j in range(num_Zero_Coeff):
j_p = A_c[j]
first_term = (C - c[j_p]) / (A_A - a[j_p])
second_term = (C + c[j_p]) / (A_A + a[j_p])
gamma_Test[j, :] = np.array([first_term, second_term]).reshape(1, -1)
gamma, min_i, min_j = min_pos(gamma_Test)
# gamma.append(m_s)
addTndex = A_c[np.min(min_i)]
beta_temp = np.zeros((m, 1))
beta_temp[A] = beta[k, A].reshape(-1, 1) + np.dot(s_A, gamma * w_A)
beta = np.vstack((beta, beta_temp.transpose())) # 更新的系数即故障f
return beta, mse
# import sklearn
# q=sklearn.linear_model.Lars
class MSSQL:
def __init__(self,host,user,pwd,database):
self.host = host
self.user = user
self.pwd = pwd
self.db = database
def __GetConnect(self):
"""
得到连接信息
返回: conn.cursor()
"""
if not self.db:
raise(NameError,"没有设置数据库信息")
self.conn = pymssql.connect(host=self.host,user=self.user,password=self.pwd,database=self.db,port=config._PORT, charset="utf8")
cur = self.conn.cursor()
if not cur:
raise(NameError,"连接数据库失败")
else:
return cur
def ExecQuery(self,sql):
"""
执行查询语句
返回的是一个包含tuple的list,list的元素是记录行,tuple的元素是每行记录的字段
"""
cur = self.__GetConnect()
cur.execute(sql)
resList = cur.fetchall()
#查询完毕后必须关闭连接
self.conn.close()
return resList
def ExecNonQuery(self,sql):
"""
执行非查询语句
调用示例:
cur = self.__GetConnect()
cur.execute(sql)
self.conn.commit()
self.conn.close()
"""
cur = self.__GetConnect()
cur.execute(sql)
self.conn.commit()
self.conn.close()
def get_model_by_ID(model_id, version="v-test"):
ms = MSSQL(host=config._SQL_IP, user="root", pwd="123456", database="alert")
resList = ms.ExecQuery(f"SELECT Model_info FROM model_cfg where model_id={model_id}")
return json.loads(resList[0][0])
def get_model_by_id_and_version(model_id, version):
ms = MSSQL(host=config._SQL_IP, user="root", pwd="123456", database="alert")
resList = ms.ExecQuery(f"SELECT Model_info FROM model_version where model_id={model_id} and version='{version}'")
return json.loads(resList[0][0])
def pca(model, Data_origin):
Data = (Data_origin - model["Train_X_mean"]) / model["Train_X_std"]
featValue = np.array(model["featValue"]) # 训练数据的特征值
k=(model["K"]) # 主元个数
featVec = np.array(model["featVec"]) # 训练数据的特征向量
selectVec1 = np.array(model["selectVec"])
selectVec=featVec[:, 0:k]
index = np.argsort(-np.array(featValue)) # 按照featValue进行从大到小排序
featValue_sort = featValue[index] # 排序后的特征值
############----------*********-SPE-**************----------########################
numbel_variable = featValue.shape[0]
C_ = np.eye(numbel_variable) - np.dot(selectVec, selectVec.T)
SPE_list = []
for i in range(Data.shape[0]):
Y = Data[i, :] # 测试数据的每一行
#########*********************计算SPE******************************
SPE_line =np.dot(Y, C_).dot(Y.T)###SPE根号
SPE_list.append(SPE_line)
paraState = np.zeros([np.array(Data_origin).shape[0], np.array(Data_origin).shape[1]])
finalData = np.dot(Data, selectVec).dot(selectVec.T)
reconData = np.add(np.multiply(finalData, model["Train_X_std"]), model["Train_X_mean"]) # 重构值
errorData =Data_origin - reconData # 偏差值
# cos检验值
R = 0
res={}
for index in range(0, reconData.shape[1]):
vector1 = Data_origin[:, index]
vector2 = np.array(reconData)[:, index]
R += np.dot(vector1, vector2.T) / (np.sqrt(np.sum(vector1 ** 2)) * np.sqrt(np.sum(vector2 ** 2)))
R /= reconData.shape[1]
#items = [('reconData', np.around(reconData, decimals=3).tolist())
# , ('errorData', np.around(errorData, decimals=3).tolist()), ('R', R.tolist()), ('SPE', np.array(SPE_list).tolist()),
# ('paraState', paraState.tolist())]
#res["sampleData"]=np.transpose(Data_origin.tolist())
res["sampleData"]=np.transpose(np.array(Data_origin)).tolist()
res["reconData"]=np.around(np.transpose(np.array(reconData)), decimals=3).tolist()
res["errorData"]=np.around(np.transpose(np.array(errorData)), decimals=3).tolist()
res["R"]=np.around(R, decimals=3).tolist()
res["SPE"]=np.around(np.transpose(np.array(SPE_list)), decimals=3).tolist()
res["paraState"]=np.transpose(np.array(paraState)).tolist()
#result = json.dumps(dict(items)) # json.dumps(result)
#return result
return res
def get_history_value(points,time,interval):
#url="http://192.168.1.201:8080/openPlant/getMultiplePointHistorys"
url=f"http://{config._EXA_IP}:9000/exawebapi/exatime/GetSamplingValueArrayFloat"
headers = {"Content-Type": "application/json;charset=utf-8"}#,"token":get_token()
point_array = points.split(",")
time_span = time.split(";")
value_array = []
for item in point_array:
value_group = []
for time_piece in time_span:
st = time_piece.split(",")[0]
et = time_piece.split(",")[1]
para = {"ItemName": item, "StartingTime": st, "TerminalTime": et, "SamplingPeriod": interval}
response = requests.get(url, headers=headers, params=para)
content = response.text.replace('"[','[').replace(']"',']')
value = json.loads(content)
if not isinstance(value, list):
print("aaa")
for row in value:
value_group.append(row[1])
value_array.append(value_group)
return np.transpose(np.array(value_array))
#return valres
def main(info):
model_id = info["Model_id"]
try:
version = info["version"]
except KeyError:
version = "v-test"
if version == "v-test":
res = get_model_by_ID(model_id)
else:
res = get_model_by_id_and_version(model_id, version)
Test_Data = info["Test_Data"]
points = Test_Data["points"]
time1 = Test_Data["time"]
interval = Test_Data["interval"]
model = res["para"]["Model_info"]
Data = get_history_value(points, time1, interval)
result = pca(model, Data)
index = time1.index(",")
result["time"] = time1[:index:]
return result
# 根据数据集data.txt
if __name__ == "__main__":
info_str='{"Test_Data":{"time":"2021-01-13 12:52:40,2021-01-14 12:52:40","points":"JL_D2_20SCS02A:MAG10CT311.PNT,JL_D2_20DAS01B:MAG10CE101.PNT,JL_D2_20MCS01A:MAG10AN001ZT.PNT,JL_D2_20SCS02A:MAG10CT312.PNT,JL_D2_20DAS01B:MAG10CE102.PNT,JL_D2_20MCS01A:MAG10AN002ZT.PNT,JL_D2_20SCS02A:MAG10CT313.PNT,JL_D2_20DAS01B:MAG10CE103.PNT,JL_D2_20MCS01A:MAG10AN003ZT.PNT,JL_D2_20SCS02A:MAG10CT314.PNT,JL_D2_20DAS01B:MAG10CE104.PNT,JL_D2_20MCS01A:MAG10AN004ZT.PNT,JL_D2_20SCS02A:MAG10CT315.PNT,JL_D2_20DAS01B:MAG10CE105.PNT,JL_D2_20MCS01A:MAG10AN005ZT.PNT,JL_D2_20SCS02A:MAG10CT316.PNT,JL_D2_20DAS01B:MAG10CE106.PNT,JL_D2_20MCS01A:MAG10AN006ZT.PNT,JL_D2_20SCS02A:MAG10CT317.PNT,JL_D2_20DAS01B:MAG10CE107.PNT,JL_D2_20MCS01A:MAG10AN007ZT.PNT,JL_D2_20DAS01B:MAJ10CT101.PNT,JL_D2_20DAS01B:MAJ10CT102.PNT,JL_D2_20SCS02A:MAG10CT101.PNT,JL_D2_20SCS02A:MAG10CT102.PNT,JL_D2_20DAS01B:MAG03CG101.PNT,JL_D2_20DAS01B:MAG03CS101.PNT","interval":300000},"Model_id":528,"version":"v-test"}'
info = json.loads(info_str)
print(main(info))
# model_id=info["Model_id"]
# Test_Data = info["Test_Data"]
# points = Test_Data["points"]
# time = Test_Data["time"]
# interval = Test_Data["interval"]
# Data = get_history_value(points, time, interval)
# # workbook = xw.Workbook("pca_test.xlsx")
# # worksheet = workbook.add_worksheet()
# # for row, item in enumerate(Data.tolist()):
# # for col, cell in enumerate(item):
# # worksheet.write(row, col, cell)
# # workbook.close()
# model = PCA_Test_offline.get_model_by_ID(model_id)["para"]["Model_info"]
# result = pca(model,Data)#模型参数,训练数据
# aaa=json.dumps(result)
# print (result)